Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Deep neural network approximation of composite functions without the curse of dimensionality (2304.05790v1)

Published 12 Apr 2023 in math.NA, cs.LG, and cs.NA

Abstract: In this article we identify a general class of high-dimensional continuous functions that can be approximated by deep neural networks (DNNs) with the rectified linear unit (ReLU) activation without the curse of dimensionality. In other words, the number of DNN parameters grows at most polynomially in the input dimension and the approximation error. The functions in our class can be expressed as a potentially unbounded number of compositions of special functions which include products, maxima, and certain parallelized Lipschitz continuous functions.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.