Papers
Topics
Authors
Recent
2000 character limit reached

Deep neural network approximation of composite functions without the curse of dimensionality (2304.05790v1)

Published 12 Apr 2023 in math.NA, cs.LG, and cs.NA

Abstract: In this article we identify a general class of high-dimensional continuous functions that can be approximated by deep neural networks (DNNs) with the rectified linear unit (ReLU) activation without the curse of dimensionality. In other words, the number of DNN parameters grows at most polynomially in the input dimension and the approximation error. The functions in our class can be expressed as a potentially unbounded number of compositions of special functions which include products, maxima, and certain parallelized Lipschitz continuous functions.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.