Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 61 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

DOSM: Demand-Prediction based Online Service Management for Vehicular Edge Computing Networks (2304.05637v1)

Published 12 Apr 2023 in cs.NI

Abstract: In this work, we investigate an online service management problem in vehicular edge computing networks. To satisfy the varying service demands of mobile vehicles, a service management framework is required to make decisions on the service lifecycle to maintain good network performance. We describe the service lifecycle consists of creating an instance of a given service (\textit{scale-out}), moving an instance to a different edge node (\textit{migration}), and/or termination of an underutilized instance (\textit{scale-in}). In this paper, we propose an efficient online algorithm to perform service management in each time slot, where performance quality in the current time slot, the service demand in future time slots, and the minimal observed delay by vehicles and the minimal migration delay are considered while making the decisions on service lifecycle. Here, the future service demand is computed from a gated recurrent unit (GRU)-based prediction model, and the network performance quality is estimated using a deep reinforcement learning (DRL) model which has the ability to interact with the vehicular environment in real-time. The choice of optimal edge location to deploy a service instance at different times is based on our proposed optimization formulations. Simulation experiments using real-world vehicle trajectories are carried out to evaluate the performance of our proposed demand-prediction based online service management (DOSM) framework against different state-of-the-art solutions using several performance metrics.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.