Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Optimal Testing of Generalized Reed-Muller Codes in Fewer Queries (2304.05598v1)

Published 12 Apr 2023 in cs.CC, cs.IT, and math.IT

Abstract: A local tester for an error correcting code $C\subseteq \Sigma{n}$ is a tester that makes $Q$ oracle queries to a given word $w\in \Sigman$ and decides to accept or reject the word $w$. An optimal local tester is a local tester that has the additional properties of completeness and optimal soundness. By completeness, we mean that the tester must accept with probability $1$ if $w\in C$. By optimal soundness, we mean that if the tester accepts with probability at least $1-\epsilon$ (where $\epsilon$ is small), then it must be the case that $w$ is $O(\epsilon/Q)$-close to some codeword $c\in C$ in Hamming distance. We show that Generalized Reed-Muller codes admit optimal testers with $Q = (3q){\lceil{ \frac{d+1}{q-1}\rceil}+O(1)}$ queries. Here, for a prime power $q = p{k}$, the Generalized Reed-Muller code, RM[n,q,d], consists of the evaluations of all $n$-variate degree $d$ polynomials over $\mathbb{F}_q$. Previously, no tester achieving this query complexity was known, and the best known testers due to Haramaty, Shpilka and Sudan(which is optimal) and due to Ron-Zewi and Sudan(which was not known to be optimal) both required $q{\lceil{\frac{d+1}{q-q/p} \rceil}}$ queries. Our tester achieves query complexity which is polynomially better than by a power of $p/(p-1)$, which is nearly the best query complexity possible for generalized Reed-Muller codes. The tester we analyze is due to Ron-Zewi and Sudan, and we show that their basic tester is in fact optimal. Our methods are more general and also allow us to prove that a wide class of testers, which follow the form of the Ron-Zewi and Sudan tester, are optimal. This result applies to testers for all affine-invariant codes (which are not necessarily generalized Reed-Muller codes).

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)