Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Distilling Token-Pruned Pose Transformer for 2D Human Pose Estimation (2304.05548v1)

Published 12 Apr 2023 in cs.CV

Abstract: Human pose estimation has seen widespread use of transformer models in recent years. Pose transformers benefit from the self-attention map, which captures the correlation between human joint tokens and the image. However, training such models is computationally expensive. The recent token-Pruned Pose Transformer (PPT) solves this problem by pruning the background tokens of the image, which are usually less informative. However, although it improves efficiency, PPT inevitably leads to worse performance than TokenPose due to the pruning of tokens. To overcome this problem, we present a novel method called Distilling Pruned-Token Transformer for human pose estimation (DPPT). Our method leverages the output of a pre-trained TokenPose to supervise the learning process of PPT. We also establish connections between the internal structure of pose transformers and PPT, such as attention maps and joint features. Our experimental results on the MPII datasets show that our DPPT can significantly improve PCK compared to previous PPT models while still reducing computational complexity.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)