Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

MoMo: A shared encoder Model for text, image and multi-Modal representations (2304.05523v1)

Published 11 Apr 2023 in cs.CV, cs.AI, and cs.CL

Abstract: We propose a self-supervised shared encoder model that achieves strong results on several visual, language and multimodal benchmarks while being data, memory and run-time efficient. We make three key contributions. First, in contrast to most existing works, we use a single transformer with all the encoder layers processing both the text and the image modalities. Second, we propose a stage-wise training strategy where the model is first trained on images, then jointly with unimodal text and image datasets and finally jointly with text and text-image datasets. Third, to preserve information across both the modalities, we propose a training pipeline that learns simultaneously from gradient updates of different modalities at each training update step. The results on downstream text-only, image-only and multimodal tasks show that our model is competitive with several strong models while using fewer parameters and lesser pre-training data. For example, MoMo performs competitively with FLAVA on multimodal (+3.1), image-only (+1.1) and text-only (-0.1) tasks despite having 2/5th the number of parameters and using 1/3rd the image-text training pairs. Finally, we ablate various design choices and further show that increasing model size produces significant performance gains indicating potential for substantial improvements with larger models using our approach.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: