Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Frontier Semantic Exploration for Visual Target Navigation (2304.05506v2)

Published 11 Apr 2023 in cs.RO

Abstract: This work focuses on the problem of visual target navigation, which is very important for autonomous robots as it is closely related to high-level tasks. To find a special object in unknown environments, classical and learning-based approaches are fundamental components of navigation that have been investigated thoroughly in the past. However, due to the difficulty in the representation of complicated scenes and the learning of the navigation policy, previous methods are still not adequate, especially for large unknown scenes. Hence, we propose a novel framework for visual target navigation using the frontier semantic policy. In this proposed framework, the semantic map and the frontier map are built from the current observation of the environment. Using the features of the maps and object category, deep reinforcement learning enables to learn a frontier semantic policy which can be used to select a frontier cell as a long-term goal to explore the environment efficiently. Experiments on Gibson and Habitat-Matterport 3D (HM3D) demonstrate that the proposed framework significantly outperforms existing map-based methods in terms of success rate and efficiency. Ablation analysis also indicates that the proposed approach learns a more efficient exploration policy based on the frontiers. A demonstration is provided to verify the applicability of applying our model to real-world transfer. The supplementary video and code can be accessed via the following link: https://sites.google.com/view/fsevn.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.