Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Comprehensive Study on Object Detection Techniques in Unconstrained Environments (2304.05295v1)

Published 11 Apr 2023 in cs.CV and cs.LG

Abstract: Object detection is a crucial task in computer vision that aims to identify and localize objects in images or videos. The recent advancements in deep learning and Convolutional Neural Networks (CNNs) have significantly improved the performance of object detection techniques. This paper presents a comprehensive study of object detection techniques in unconstrained environments, including various challenges, datasets, and state-of-the-art approaches. Additionally, we present a comparative analysis of the methods and highlight their strengths and weaknesses. Finally, we provide some future research directions to further improve object detection in unconstrained environments.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)