Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Cooperative Online Learning for Multi-Agent System Control via Gaussian Processes with Event-Triggered Mechanism: Extended Version (2304.05138v3)

Published 11 Apr 2023 in eess.SY and cs.SY

Abstract: In the realm of the cooperative control of multi-agent systems (MASs) with unknown dynamics, Gaussian process (GP) regression is widely used to infer the uncertainties due to its modeling flexibility of nonlinear functions and the existence of a theoretical prediction error bound. Online learning, which involves incorporating newly acquired training data into Gaussian process models, promises to improve control performance by enhancing predictions during the operation. Therefore, this paper investigates the online cooperative learning algorithm for MAS control. Moreover, an event-triggered data selection mechanism, inspired by the analysis of a centralized event-trigger, is introduced to reduce the model update frequency and enhance the data efficiency. With the proposed learning-based control, the practical convergence of the MAS is validated with guaranteed tracking performance via the Lynaponve theory. Furthermore, the exclusion of the Zeno behavior for individual agents is shown. Finally, the effectiveness of the proposed event-triggered online learning method is demonstrated in simulations.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.