Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Fast IMU-based Dual Estimation of Human Motion and Kinematic Parameters via Progressive In-Network Computing (2304.05131v1)

Published 11 Apr 2023 in eess.SY and cs.SY

Abstract: Many applications involve humans in the loop, where continuous and accurate human motion monitoring provides valuable information for safe and intuitive human-machine interaction. Portable devices such as inertial measurement units (IMUs) are applicable to monitor human motions, while in practice often limited computational power is available locally. The human motion in task space coordinates requires not only the human joint motion but also the nonlinear coordinate transformation depending on the parameters such as human limb length. In most applications, measuring these kinematics parameters for each individual requires undesirably high effort. Therefore, it is desirable to estimate both, the human motion and kinematic parameters from IMUs. In this work, we propose a novel computational framework for dual estimation in real-time exploiting in-network computational resources. We adopt the concept of field Kalman filtering, where the dual estimation problem is decomposed into a fast state estimation process and a computationally expensive parameter estimation process. In order to further accelerate the convergence, the parameter estimation is progressively computed on multiple networked computational nodes. The superiority of our proposed method is demonstrated by a simulation of a human arm, where the estimation accuracy is shown to converge faster than with conventional approaches.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.