Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 186 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Balancing Privacy and Performance for Private Federated Learning Algorithms (2304.05127v2)

Published 11 Apr 2023 in cs.CR, cs.CV, cs.LG, and eess.IV

Abstract: Federated learning (FL) is a distributed ML framework where multiple clients collaborate to train a model without exposing their private data. FL involves cycles of local computations and bi-directional communications between the clients and server. To bolster data security during this process, FL algorithms frequently employ a differential privacy (DP) mechanism that introduces noise into each client's model updates before sharing. However, while enhancing privacy, the DP mechanism often hampers convergence performance. In this paper, we posit that an optimal balance exists between the number of local steps and communication rounds, one that maximizes the convergence performance within a given privacy budget. Specifically, we present a proof for the optimal number of local steps and communication rounds that enhance the convergence bounds of the DP version of the ScaffNew algorithm. Our findings reveal a direct correlation between the optimal number of local steps, communication rounds, and a set of variables, e.g the DP privacy budget and other problem parameters, specifically in the context of strongly convex optimization. We furthermore provide empirical evidence to validate our theoretical findings.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.