Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Learning Optimal Fair Scoring Systems for Multi-Class Classification (2304.05023v1)

Published 11 Apr 2023 in cs.LG, cs.CY, and math.OC

Abstract: Machine Learning models are increasingly used for decision making, in particular in high-stakes applications such as credit scoring, medicine or recidivism prediction. However, there are growing concerns about these models with respect to their lack of interpretability and the undesirable biases they can generate or reproduce. While the concepts of interpretability and fairness have been extensively studied by the scientific community in recent years, few works have tackled the general multi-class classification problem under fairness constraints, and none of them proposes to generate fair and interpretable models for multi-class classification. In this paper, we use Mixed-Integer Linear Programming (MILP) techniques to produce inherently interpretable scoring systems under sparsity and fairness constraints, for the general multi-class classification setup. Our work generalizes the SLIM (Supersparse Linear Integer Models) framework that was proposed by Rudin and Ustun to learn optimal scoring systems for binary classification. The use of MILP techniques allows for an easy integration of diverse operational constraints (such as, but not restricted to, fairness or sparsity), but also for the building of certifiably optimal models (or sub-optimal models with bounded optimality gap).

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.