Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Privacy Amplification via Shuffling: Unified, Simplified, and Tightened (2304.05007v5)

Published 11 Apr 2023 in cs.CR

Abstract: The shuffle model of differential privacy provides promising privacy-utility balances in decentralized, privacy-preserving data analysis. However, the current analyses of privacy amplification via shuffling lack both tightness and generality. To address this issue, we propose the \emph{variation-ratio reduction} as a comprehensive framework for privacy amplification in both single-message and multi-message shuffle protocols. It leverages two new parameterizations: the total variation bounds of local messages and the probability ratio bounds of blanket messages, to determine indistinguishability levels. Our theoretical results demonstrate that our framework provides tighter bounds, especially for local randomizers with extremal probability design, where our bounds are exactly tight. Additionally, variation-ratio reduction complements parallel composition in the shuffle model, yielding enhanced privacy accounting for popular sampling-based randomizers employed in statistical queries (e.g., range queries, marginal queries, and frequent itemset mining). Empirical findings demonstrate that our numerical amplification bounds surpass existing ones, conserving up to $30\%$ of the budget for single-message protocols, $75\%$ for multi-message ones, and a striking $75\%$-$95\%$ for parallel composition. Our bounds also result in a remarkably efficient $\tilde{O}(n)$ algorithm that numerically amplifies privacy in less than $10$ seconds for $n=108$ users.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube