Papers
Topics
Authors
Recent
2000 character limit reached

Diffusion Recommender Model (2304.04971v3)

Published 11 Apr 2023 in cs.IR

Abstract: Generative models such as Generative Adversarial Networks (GANs) and Variational Auto-Encoders (VAEs) are widely utilized to model the generative process of user interactions. However, these generative models suffer from intrinsic limitations such as the instability of GANs and the restricted representation ability of VAEs. Such limitations hinder the accurate modeling of the complex user interaction generation procedure, such as noisy interactions caused by various interference factors. In light of the impressive advantages of Diffusion Models (DMs) over traditional generative models in image synthesis, we propose a novel Diffusion Recommender Model (named DiffRec) to learn the generative process in a denoising manner. To retain personalized information in user interactions, DiffRec reduces the added noises and avoids corrupting users' interactions into pure noises like in image synthesis. In addition, we extend traditional DMs to tackle the unique challenges in practical recommender systems: high resource costs for large-scale item prediction and temporal shifts of user preference. To this end, we propose two extensions of DiffRec: L-DiffRec clusters items for dimension compression and conducts the diffusion processes in the latent space; and T-DiffRec reweights user interactions based on the interaction timestamps to encode temporal information. We conduct extensive experiments on three datasets under multiple settings (e.g. clean training, noisy training, and temporal training). The empirical results and in-depth analysis validate the superiority of DiffRec with two extensions over competitive baselines.

Citations (63)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.