Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Sentence-Level Relation Extraction via Contrastive Learning with Descriptive Relation Prompts (2304.04935v1)

Published 11 Apr 2023 in cs.CL

Abstract: Sentence-level relation extraction aims to identify the relation between two entities for a given sentence. The existing works mostly focus on obtaining a better entity representation and adopting a multi-label classifier for relation extraction. A major limitation of these works is that they ignore background relational knowledge and the interrelation between entity types and candidate relations. In this work, we propose a new paradigm, Contrastive Learning with Descriptive Relation Prompts(CTL-DRP), to jointly consider entity information, relational knowledge and entity type restrictions. In particular, we introduce an improved entity marker and descriptive relation prompts when generating contextual embedding, and utilize contrastive learning to rank the restricted candidate relations. The CTL-DRP obtains a competitive F1-score of 76.7% on TACRED. Furthermore, the new presented paradigm achieves F1-scores of 85.8% and 91.6% on TACREV and Re-TACRED respectively, which are both the state-of-the-art performance.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)