Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Connecting Fairness in Machine Learning with Public Health Equity (2304.04761v1)

Published 8 Apr 2023 in cs.LG, cs.AI, and cs.CY

Abstract: Machine learning (ML) has become a critical tool in public health, offering the potential to improve population health, diagnosis, treatment selection, and health system efficiency. However, biases in data and model design can result in disparities for certain protected groups and amplify existing inequalities in healthcare. To address this challenge, this study summarizes seminal literature on ML fairness and presents a framework for identifying and mitigating biases in the data and model. The framework provides guidance on incorporating fairness into different stages of the typical ML pipeline, such as data processing, model design, deployment, and evaluation. To illustrate the impact of biases in data on ML models, we present examples that demonstrate how systematic biases can be amplified through model predictions. These case studies suggest how the framework can be used to prevent these biases and highlight the need for fair and equitable ML models in public health. This work aims to inform and guide the use of ML in public health towards a more ethical and equitable outcome for all populations.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.