Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

DeepHive: A multi-agent reinforcement learning approach for automated discovery of swarm-based optimization policies (2304.04751v1)

Published 29 Mar 2023 in cs.AI

Abstract: We present an approach for designing swarm-based optimizers for the global optimization of expensive black-box functions. In the proposed approach, the problem of finding efficient optimizers is framed as a reinforcement learning problem, where the goal is to find optimization policies that require a few function evaluations to converge to the global optimum. The state of each agent within the swarm is defined as its current position and function value within a design space and the agents learn to take favorable actions that maximize reward, which is based on the final value of the objective function. The proposed approach is tested on various benchmark optimization functions and compared to the performance of other global optimization strategies. Furthermore, the effect of changing the number of agents, as well as the generalization capabilities of the trained agents are investigated. The results show superior performance compared to the other optimizers, desired scaling when the number of agents is varied, and acceptable performance even when applied to unseen functions. On a broader scale, the results show promise for the rapid development of domain-specific optimizers.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.