Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

SAM vs BET: A Comparative Study for Brain Extraction and Segmentation of Magnetic Resonance Images using Deep Learning (2304.04738v3)

Published 10 Apr 2023 in eess.IV, cs.CV, and cs.LG

Abstract: Brain extraction is a critical preprocessing step in various neuroimaging studies, particularly enabling accurate separation of brain from non-brain tissue and segmentation of relevant within-brain tissue compartments and structures using Magnetic Resonance Imaging (MRI) data. FSL's Brain Extraction Tool (BET), although considered the current gold standard for automatic brain extraction, presents limitations and can lead to errors such as over-extraction in brains with lesions affecting the outer parts of the brain, inaccurate differentiation between brain tissue and surrounding meninges, and susceptibility to image quality issues. Recent advances in computer vision research have led to the development of the Segment Anything Model (SAM) by Meta AI, which has demonstrated remarkable potential in zero-shot segmentation of objects in real-world scenarios. In the current paper, we present a comparative analysis of brain extraction techniques comparing SAM with a widely used and current gold standard technique called BET on a variety of brain scans with varying image qualities, MR sequences, and brain lesions affecting different brain regions. We find that SAM outperforms BET based on average Dice coefficient, IoU and accuracy metrics, particularly in cases where image quality is compromised by signal inhomogeneities, non-isotropic voxel resolutions, or the presence of brain lesions that are located near (or involve) the outer regions of the brain and the meninges. In addition, SAM has also unsurpassed segmentation properties allowing a fine grain separation of different issue compartments and different brain structures. These results suggest that SAM has the potential to emerge as a more accurate, robust and versatile tool for a broad range of brain extraction and segmentation applications.

Citations (26)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.