Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

L0-norm constraint normalized subband adaptive filtering algorithm: Performance development and AEC application (2304.04647v2)

Published 10 Apr 2023 in eess.SY and cs.SY

Abstract: Limited by fixed step-size and sparsity penalty factor, the conventional sparsity-aware normalized subband adaptive filtering (NSAF) type algorithms suffer from trade-off requirements of high filtering accurateness and quicker convergence behavior for sparse system identification. To deal with this problem, this paper proposes variable step-size L0-norm constraint NSAF algorithms (VSS-L0-NSAFs). We first analyze mean-square-deviation (MSD) statistics behavior of the L0-NSAF innovatively in according to novel weight recursion form and arrive at corresponding expressions for the cases that background noise variance is available and unavailable, where correlation degree of system input is indicated by scaling parameter r. Based on derivations, we develop an effective variable step-size scheme through minimizing the upper bounds of the MSD under some reasonable assumptions and lemma. Furthermore, an effective reset strategy is incorporated into presented algorithms to tackle with non-stationary situations. Finally, numerical simulations corroborate that the proposed algorithms achieve better performance in terms of estimation accurateness and tracking capability in comparison with existing related algorithms in sparse system identification and adaptive echo cancellation circumstances.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.