Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ranking and Unranking k-subsequence universal words (2304.04583v1)

Published 10 Apr 2023 in cs.DS and math.CO

Abstract: A subsequence of a word $w$ is a word $u$ such that $u = w[i_1] w[i_2] , \dots w[i_{|u|}]$, for some set of indices $1 \leq i_1 < i_2 < \dots < i_k \leq |w|$. A word $w$ is $k$-subsequence universal over an alphabet $\Sigma$ if every word in $\Sigmak$ appears in $w$ as a subsequence. In this paper, we provide new algorithms for $k$-subsequence universal words of fixed length $n$ over the alphabet $\Sigma = {1,2,\dots, \sigma}$. Letting $\mathcal{U}(n,k,\sigma)$ denote the set of $n$-length $k$-subsequence universal words over $\Sigma$, we provide: * an $O(n k \sigma)$ time algorithm for counting the size of $\mathcal{U}(n,k,\sigma)$; * an $O(n k \sigma)$ time algorithm for ranking words in the set $\mathcal{U}(n,k,\sigma)$; * an $O(n k \sigma)$ time algorithm for unranking words from the set $\mathcal{U}(n,k,\sigma)$; * an algorithm for enumerating the set $\mathcal{U}(n,k,\sigma)$ with $O(n \sigma)$ delay after $O(n k \sigma)$ preprocessing.

Citations (3)

Summary

We haven't generated a summary for this paper yet.