Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Linking a predictive model to causal effect estimation (2304.04566v1)

Published 10 Apr 2023 in cs.LG, cs.AI, and stat.ME

Abstract: A predictive model makes outcome predictions based on some given features, i.e., it estimates the conditional probability of the outcome given a feature vector. In general, a predictive model cannot estimate the causal effect of a feature on the outcome, i.e., how the outcome will change if the feature is changed while keeping the values of other features unchanged. This is because causal effect estimation requires interventional probabilities. However, many real world problems such as personalised decision making, recommendation, and fairness computing, need to know the causal effect of any feature on the outcome for a given instance. This is different from the traditional causal effect estimation problem with a fixed treatment variable. This paper first tackles the challenge of estimating the causal effect of any feature (as the treatment) on the outcome w.r.t. a given instance. The theoretical results naturally link a predictive model to causal effect estimations and imply that a predictive model is causally interpretable when the conditions identified in the paper are satisfied. The paper also reveals the robust property of a causally interpretable model. We use experiments to demonstrate that various types of predictive models, when satisfying the conditions identified in this paper, can estimate the causal effects of features as accurately as state-of-the-art causal effect estimation methods. We also show the potential of such causally interpretable predictive models for robust predictions and personalised decision making.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.