Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Two Steps Forward and One Behind: Rethinking Time Series Forecasting with Deep Learning (2304.04553v3)

Published 10 Apr 2023 in cs.LG and cs.AI

Abstract: The Transformer is a highly successful deep learning model that has revolutionised the world of artificial neural networks, first in natural language processing and later in computer vision. This model is based on the attention mechanism and is able to capture complex semantic relationships between a variety of patterns present in the input data. Precisely because of these characteristics, the Transformer has recently been exploited for time series forecasting problems, assuming a natural adaptability to the domain of continuous numerical series. Despite the acclaimed results in the literature, some works have raised doubts about the robustness and effectiveness of this approach. In this paper, we further investigate the effectiveness of Transformer-based models applied to the domain of time series forecasting, demonstrate their limitations, and propose a set of alternative models that are better performing and significantly less complex. In particular, we empirically show how simplifying Transformer-based forecasting models almost always leads to an improvement, reaching state of the art performance. We also propose shallow models without the attention mechanism, which compete with the overall state of the art in long time series forecasting, and demonstrate their ability to accurately predict time series over extremely long windows. From a methodological perspective, we show how it is always necessary to use a simple baseline to verify the effectiveness of proposed models, and finally, we conclude the paper with a reflection on recent research paths and the opportunity to follow trends and hypes even where it may not be necessary.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.