Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Deep Reinforcement Learning with Importance Weighted A3C for QoE enhancement in Video Delivery Services (2304.04527v1)

Published 10 Apr 2023 in cs.MM

Abstract: Adaptive bitrate (ABR) algorithms are used to adapt the video bitrate based on the network conditions to improve the overall video quality of experience (QoE). Recently, reinforcement learning (RL) and asynchronous advantage actor-critic (A3C) methods have been used to generate adaptive bit rate algorithms and they have been shown to improve the overall QoE as compared to fixed rule ABR algorithms. However, a common issue in the A3C methods is the lag between behaviour policy and target policy. As a result, the behaviour and the target policies are no longer synchronized which results in suboptimal updates. In this work, we present ALISA: An Actor-Learner Architecture with Importance Sampling for efficient learning in ABR algorithms. ALISA incorporates importance sampling weights to give more weightage to relevant experience to address the lag issues with the existing A3C methods. We present the design and implementation of ALISA, and compare its performance to state-of-the-art video rate adaptation algorithms including vanilla A3C implemented in the Pensieve framework and other fixed-rule schedulers like BB, BOLA, and RB. Our results show that ALISA improves average QoE by up to 25%-48% higher average QoE than Pensieve, and even more when compared to fixed-rule schedulers.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube