Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 67 tok/s Pro
Kimi K2 148 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

COOOL: A Learning-To-Rank Approach for SQL Hint Recommendations (2304.04407v1)

Published 10 Apr 2023 in cs.DB

Abstract: Query optimization is a pivotal part of every database management system (DBMS) since it determines the efficiency of query execution. Numerous works have introduced Machine Learning (ML) techniques to cost modeling, cardinality estimation, and end-to-end learned optimizer, but few of them are proven practical due to long training time, lack of interpretability, and integration cost. A recent study provides a practical method to optimize queries by recommending per-query hints but it suffers from two inherited problems. First, it follows the regression framework to predict the absolute latency of each query plan, which is very challenging because the latencies of query plans for a certain query may span multiple orders of magnitude. Second, it requires training a model for each dataset, which restricts the application of the trained models in practice. In this paper, we propose COOOL to predict Cost Orders of query plans to cOOperate with DBMS by Learning-To-Rank. Instead of estimating absolute costs, COOOL uses ranking-based approaches to compute relative ranking scores of the costs of query plans. We show that COOOL is theoretically valid to distinguish query plans with different latencies. We implement COOOL on PostgreSQL, and extensive experiments on join-order-benchmark and TPC-H data demonstrate that COOOL outperforms PostgreSQL and state-of-the-art methods on single-dataset tasks as well as a unified model for multiple-dataset tasks. Our experiments also shed some light on why COOOL outperforms regression approaches from the representation learning perspective, which may guide future research.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.