Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 27 tok/s Pro
2000 character limit reached

Randomized and Deterministic Attention Sparsification Algorithms for Over-parameterized Feature Dimension (2304.04397v1)

Published 10 Apr 2023 in cs.DS and cs.LG

Abstract: LLMs have shown their power in different areas. Attention computation, as an important subroutine of LLMs, has also attracted interests in theory. Recently the static computation and dynamic maintenance of attention matrix has been studied by [Alman and Song 2023] and [Brand, Song and Zhou 2023] from both algorithmic perspective and hardness perspective. In this work, we consider the sparsification of the attention problem. We make one simplification which is the logit matrix is symmetric. Let $n$ denote the length of sentence, let $d$ denote the embedding dimension. Given a matrix $X \in \mathbb{R}{n \times d}$, suppose $d \gg n$ and $| X X\top |{\infty} < r$ with $r \in (0,0.1)$, then we aim for finding $Y \in \mathbb{R}{n \times m}$ (where $m\ll d$) such that \begin{align*} | D(Y){-1} \exp( Y Y\top ) - D(X){-1} \exp( X X\top) |{\infty} \leq O(r) \end{align*} We provide two results for this problem. $\bullet$ Our first result is a randomized algorithm. It runs in $\widetilde{O}(\mathrm{nnz}(X) + n{\omega} ) $ time, has $1-\delta$ succeed probability, and chooses $m = O(n \log(n/\delta))$. Here $\mathrm{nnz}(X)$ denotes the number of non-zero entries in $X$. We use $\omega$ to denote the exponent of matrix multiplication. Currently $\omega \approx 2.373$. $\bullet$ Our second result is a deterministic algorithm. It runs in $\widetilde{O}(\min{\sum_{i\in[d]}\mathrm{nnz}(X_i)2, dn{\omega-1}} + n{\omega+1})$ time and chooses $m = O(n)$. Here $X_i$ denote the $i$-th column of matrix $X$. Our main findings have the following implication for applied LLMs task: for any super large feature dimension, we can reduce it down to the size nearly linear in length of sentence.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube