Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Multi-class Categorization of Reasons behind Mental Disturbance in Long Texts (2304.04118v1)

Published 8 Apr 2023 in cs.CL and cs.CY

Abstract: Motivated with recent advances in inferring users' mental state in social media posts, we identify and formulate the problem of finding causal indicators behind mental illness in self-reported text. In the past, we witness the presence of rule-based studies for causal explanation analysis on curated Facebook data. The investigation on transformer-based model for multi-class causal categorization in Reddit posts point to a problem of using long-text which contains as many as 4000 words. Developing end-to-end transformer-based models subject to the limitation of maximum-length in a given instance. To handle this problem, we use Longformer and deploy its encoding on transformer-based classifier. The experimental results show that Longformer achieves new state-of-the-art results on M-CAMS, a publicly available dataset with 62\% F1-score. Cause-specific analysis and ablation study prove the effectiveness of Longformer. We believe our work facilitates causal analysis of depression and suicide risk on social media data, and shows potential for application on other mental health conditions.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)