Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

How Does Imperfect Automatic Indexing Affect Semantic Search Performance? (2304.04057v1)

Published 8 Apr 2023 in cs.IR

Abstract: Documents in the health domain are often annotated with semantic concepts (i.e., terms) from controlled vocabularies. As the volume of these documents gets large, the annotation work is increasingly done by algorithms. Compared to humans, automatic indexing algorithms are imperfect and may assign wrong terms to documents, which affect subsequent search tasks where queries contain these terms. In this work, we aim to understand the performance impact of using imperfectly assigned terms in Boolean semantic searches. We used MeSH terms and biomedical literature search as a case study. We implemented multiple automatic indexing algorithms on real-world Boolean queries that consist of MeSH terms, and found that (1) probabilistic logic can handle inaccurately assigned terms better than traditional Boolean logic, (2) query-level performance is mostly limited by lowest-performing terms in a query, and (3) mixing a small amount of human indexing with automatic indexing can regain excellent query-level performance. These findings provide important implications for future work on automatic indexing.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.