Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Evolving Reinforcement Learning Environment to Minimize Learner's Achievable Reward: An Application on Hardening Active Directory Systems (2304.03998v1)

Published 8 Apr 2023 in cs.NE

Abstract: We study a Stackelberg game between one attacker and one defender in a configurable environment. The defender picks a specific environment configuration. The attacker observes the configuration and attacks via Reinforcement Learning (RL trained against the observed environment). The defender's goal is to find the environment with minimum achievable reward for the attacker. We apply Evolutionary Diversity Optimization (EDO) to generate diverse population of environments for training. Environments with clearly high rewards are killed off and replaced by new offsprings to avoid wasting training time. Diversity not only improves training quality but also fits well with our RL scenario: RL agents tend to improve gradually, so a slightly worse environment earlier on may become better later. We demonstrate the effectiveness of our approach by focusing on a specific application, Active Directory (AD). AD is the default security management system for Windows domain networks. AD environment describes an attack graph, where nodes represent computers/accounts/etc., and edges represent accesses. The attacker aims to find the best attack path to reach the highest-privilege node. The defender can change the graph by removing a limited number of edges (revoke accesses). Our approach generates better defensive plans than the existing approach and scales better.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube