Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Unsupervised Speech Representation Pooling Using Vector Quantization (2304.03940v1)

Published 8 Apr 2023 in cs.LG, cs.AI, cs.SD, and eess.AS

Abstract: With the advent of general-purpose speech representations from large-scale self-supervised models, applying a single model to multiple downstream tasks is becoming a de-facto approach. However, the pooling problem remains; the length of speech representations is inherently variable. The naive average pooling is often used, even though it ignores the characteristics of speech, such as differently lengthed phonemes. Hence, we design a novel pooling method to squash acoustically similar representations via vector quantization, which does not require additional training, unlike attention-based pooling. Further, we evaluate various unsupervised pooling methods on various self-supervised models. We gather diverse methods scattered around speech and text to evaluate on various tasks: keyword spotting, speaker identification, intent classification, and emotion recognition. Finally, we quantitatively and qualitatively analyze our method, comparing it with supervised pooling methods.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.