Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 65 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

3D GANs and Latent Space: A comprehensive survey (2304.03932v1)

Published 8 Apr 2023 in cs.CV, cs.AI, cs.LG, and eess.IV

Abstract: Generative Adversarial Networks (GANs) have emerged as a significant player in generative modeling by mapping lower-dimensional random noise to higher-dimensional spaces. These networks have been used to generate high-resolution images and 3D objects. The efficient modeling of 3D objects and human faces is crucial in the development process of 3D graphical environments such as games or simulations. 3D GANs are a new type of generative model used for 3D reconstruction, point cloud reconstruction, and 3D semantic scene completion. The choice of distribution for noise is critical as it represents the latent space. Understanding a GAN's latent space is essential for fine-tuning the generated samples, as demonstrated by the morphing of semantically meaningful parts of images. In this work, we explore the latent space and 3D GANs, examine several GAN variants and training methods to gain insights into improving 3D GAN training, and suggest potential future directions for further research.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.