Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

MC-MLP:Multiple Coordinate Frames in all-MLP Architecture for Vision (2304.03917v1)

Published 8 Apr 2023 in cs.CV

Abstract: In deep learning, Multi-Layer Perceptrons (MLPs) have once again garnered attention from researchers. This paper introduces MC-MLP, a general MLP-like backbone for computer vision that is composed of a series of fully-connected (FC) layers. In MC-MLP, we propose that the same semantic information has varying levels of difficulty in learning, depending on the coordinate frame of features. To address this, we perform an orthogonal transform on the feature information, equivalent to changing the coordinate frame of features. Through this design, MC-MLP is equipped with multi-coordinate frame receptive fields and the ability to learn information across different coordinate frames. Experiments demonstrate that MC-MLP outperforms most MLPs in image classification tasks, achieving better performance at the same parameter level. The code will be available at: https://github.com/ZZM11/MC-MLP.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.