Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 126 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

MCDIP-ADMM: Overcoming Overfitting in DIP-based CT reconstruction (2304.03895v3)

Published 8 Apr 2023 in eess.IV and cs.CV

Abstract: This paper investigates the application of unsupervised learning methods for computed tomography (CT) reconstruction. To motivate our work, we review several existing priors, namely the truncated Gaussian prior, the $l_1$ prior, the total variation prior, and the deep image prior (DIP). We find that DIP outperforms the other three priors in terms of representational capability and visual performance. However, the performance of DIP deteriorates when the number of iterations exceeds a certain threshold due to overfitting. To address this issue, we propose a novel method (MCDIP-ADMM) based on Multi-Code Deep Image Prior and plug-and-play Alternative Direction Method of Multipliers. Specifically, MCDIP utilizes multiple latent codes to generate a series of feature maps at an intermediate layer within a generator model. These maps are then composed with trainable weights, representing the complete image prior. Experimental results demonstrate the superior performance of the proposed MCDIP-ADMM compared to three existing competitors. In the case of parallel beam projection with Gaussian noise, MCDIP-ADMM achieves an average improvement of 4.3 dB over DIP, 1.7 dB over ADMM DIP-WTV, and 1.2 dB over PnP-DIP in terms of PSNR. Similarly, for fan-beam projection with Poisson noise, MCDIP-ADMM achieves an average improvement of 3.09 dB over DIP, 1.86 dB over ADMM DIP-WTV, and 0.84 dB over PnP-DIP in terms of PSNR.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.