Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Masked Student Dataset of Expressions (2304.03867v1)

Published 7 Apr 2023 in cs.CV and cs.HC

Abstract: Facial expression recognition (FER) algorithms work well in constrained environments with little or no occlusion of the face. However, real-world face occlusion is prevalent, most notably with the need to use a face mask in the current Covid-19 scenario. While there are works on the problem of occlusion in FER, little has been done before on the particular face mask scenario. Moreover, the few works in this area largely use synthetically created masked FER datasets. Motivated by these challenges posed by the pandemic to FER, we present a novel dataset, the Masked Student Dataset of Expressions or MSD-E, consisting of 1,960 real-world non-masked and masked facial expression images collected from 142 individuals. Along with the issue of obfuscated facial features, we illustrate how other subtler issues in masked FER are represented in our dataset. We then provide baseline results using ResNet-18, finding that its performance dips in the non-masked case when trained for FER in the presence of masks. To tackle this, we test two training paradigms: contrastive learning and knowledge distillation, and find that they increase the model's performance in the masked scenario while maintaining its non-masked performance. We further visualise our results using t-SNE plots and Grad-CAM, demonstrating that these paradigms capitalise on the limited features available in the masked scenario. Finally, we benchmark SOTA methods on MSD-E.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.