Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Multilingual Augmentation for Robust Visual Question Answering in Remote Sensing Images (2304.03844v1)

Published 7 Apr 2023 in cs.CV

Abstract: Aiming at answering questions based on the content of remotely sensed images, visual question answering for remote sensing data (RSVQA) has attracted much attention nowadays. However, previous works in RSVQA have focused little on the robustness of RSVQA. As we aim to enhance the reliability of RSVQA models, how to learn robust representations against new words and different question templates with the same meaning is the key challenge. With the proposed augmented dataset, we are able to obtain more questions in addition to the original ones with the same meaning. To make better use of this information, in this study, we propose a contrastive learning strategy for training robust RSVQA models against diverse question templates and words. Experimental results demonstrate that the proposed augmented dataset is effective in improving the robustness of the RSVQA model. In addition, the contrastive learning strategy performs well on the low resolution (LR) dataset.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.