Integrating Edge-AI in Structural Health Monitoring domain (2304.03718v1)
Abstract: Structural health monitoring (SHM) tasks like damage detection are crucial for decision-making regarding maintenance and deterioration. For example, crack detection in SHM is crucial for bridge maintenance as crack progression can lead to structural instability. However, most AI/ML models in the literature have low latency and late inference time issues while performing in real-time environments. This study aims to explore the integration of edge-AI in the SHM domain for real-time bridge inspections. Based on edge-AI literature, its capabilities will be valuable integration for a real-time decision support system in SHM tasks such that real-time inferences can be performed on physical sites. This study will utilize commercial edge-AI platforms, such as Google Coral Dev Board or Kneron KL520, to develop and analyze the effectiveness of edge-AI devices. Thus, this study proposes an edge AI framework for the structural health monitoring domain. An edge-AI-compatible deep learning model is developed to validate the framework to perform real-time crack classification. The effectiveness of this model will be evaluated based on its accuracy, the confusion matrix generated, and the inference time observed in a real-time setting.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.