Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

High Accuracy Uncertainty-Aware Interatomic Force Modeling with Equivariant Bayesian Neural Networks (2304.03694v1)

Published 5 Apr 2023 in physics.chem-ph, cs.LG, and physics.comp-ph

Abstract: Even though Bayesian neural networks offer a promising framework for modeling uncertainty, active learning and incorporating prior physical knowledge, few applications of them can be found in the context of interatomic force modeling. One of the main challenges in their application to learning interatomic forces is the lack of suitable Monte Carlo Markov chain sampling algorithms for the posterior density, as the commonly used algorithms do not converge in a practical amount of time for many of the state-of-the-art architectures. As a response to this challenge, we introduce a new Monte Carlo Markov chain sampling algorithm in this paper which can circumvent the problems of the existing sampling methods. In addition, we introduce a new stochastic neural network model based on the NequIP architecture and demonstrate that, when combined with our novel sampling algorithm, we obtain predictions with state-of-the-art accuracy as well as a good measure of uncertainty.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.