Unified $hp$-HDG Frameworks for Friedrichs' PDE systems (2304.03690v1)
Abstract: This work proposes a unified $hp$-adaptivity framework for hybridized discontinuous Galerkin (HDG) method for a large class of partial differential equations (PDEs) of Friedrichs' type. In particular, we present unified $hp$-HDG formulations for abstract one-field and two-field structures and prove their well-posedness. In order to handle non-conforming interfaces we simply take advantage of HDG built-in mortar structures. With split-type mortars and the approximation space of trace, a numerical flux can be derived via Godunov approach and be naturally employed without any additional treatment. As a consequence, the proposed formulations are parameter-free. We perform several numerical experiments for time-independent and linear PDEs including elliptic, hyperbolic, and mixed-type to verify the proposed unified $hp$-formulations and demonstrate the effectiveness of $hp$-adaptation. Two adaptivity criteria are considered: one is based on a simple and fast error indicator, while the other is rigorous but more expensive using an adjoint-based error estimate. The numerical results show that these two approaches are comparable in terms of convergence rate even for problems with strong gradients, discontinuities, or singularities.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.