Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Parameterization-Free Observer Design for Nonlinear Systems: Application to the State Estimation of Networked SIR Epidemics (2304.03687v1)

Published 7 Apr 2023 in eess.SY, cs.SY, and math.OC

Abstract: Traditional observer design methods rely on certain properties of the system's nonlinearity, such as Lipschitz continuity, one-sided Lipschitzness, a bounded Jacobian, or quadratic boundedness. These properties are described by parameterized inequalities. However, enforcing these inequalities globally can lead to very large parameters, resulting in overly conservative observer design criteria. These criteria become infeasible for highly nonlinear applications, such as networked epidemic processes. In this paper, we present an observer design approach for estimating the state of nonlinear systems, without requiring any parameterization of the system's nonlinearities. The proposed observer design depends only on systems' matrices and applies to systems with any nonlinearity. We establish different design criteria for ensuring both asymptotic and exponential convergence of the estimation error to zero. To demonstrate the efficacy of our approach, we employ it for estimating the state of a networked SIR epidemic model. We show that, even in the presence of measurement noise, the observer can accurately estimate the epidemic state of each node in the network. To the best of our knowledge, the proposed observer is the first that is capable of estimating the state of networked SIR models.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.