Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Parameterization-Free Observer Design for Nonlinear Systems: Application to the State Estimation of Networked SIR Epidemics (2304.03687v1)

Published 7 Apr 2023 in eess.SY, cs.SY, and math.OC

Abstract: Traditional observer design methods rely on certain properties of the system's nonlinearity, such as Lipschitz continuity, one-sided Lipschitzness, a bounded Jacobian, or quadratic boundedness. These properties are described by parameterized inequalities. However, enforcing these inequalities globally can lead to very large parameters, resulting in overly conservative observer design criteria. These criteria become infeasible for highly nonlinear applications, such as networked epidemic processes. In this paper, we present an observer design approach for estimating the state of nonlinear systems, without requiring any parameterization of the system's nonlinearities. The proposed observer design depends only on systems' matrices and applies to systems with any nonlinearity. We establish different design criteria for ensuring both asymptotic and exponential convergence of the estimation error to zero. To demonstrate the efficacy of our approach, we employ it for estimating the state of a networked SIR epidemic model. We show that, even in the presence of measurement noise, the observer can accurately estimate the epidemic state of each node in the network. To the best of our knowledge, the proposed observer is the first that is capable of estimating the state of networked SIR models.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube