Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Using LSTM and GRU With a New Dataset for Named Entity Recognition in the Arabic Language (2304.03399v1)

Published 6 Apr 2023 in cs.CL

Abstract: Named entity recognition (NER) is a natural language processing task (NLP), which aims to identify named entities and classify them like person, location, organization, etc. In the Arabic language, we can find a considerable size of unstructured data, and it needs to different preprocessing tool than languages like (English, Russian, German...). From this point, we can note the importance of building a new structured dataset to solve the lack of structured data. In this work, we use the BIOES format to tag the word, which allows us to handle the nested name entity that consists of more than one sentence and define the start and the end of the name. The dataset consists of more than thirty-six thousand records. In addition, this work proposes long short term memory (LSTM) units and Gated Recurrent Units (GRU) for building the named entity recognition model in the Arabic language. The models give an approximately good result (80%) because LSTM and GRU models can find the relationships between the words of the sentence. Also, use a new library from Google, which is Trax and platform Colab

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.