Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Beyond NeRF Underwater: Learning Neural Reflectance Fields for True Color Correction of Marine Imagery (2304.03384v2)

Published 6 Apr 2023 in cs.CV and cs.RO

Abstract: Underwater imagery often exhibits distorted coloration as a result of light-water interactions, which complicates the study of benthic environments in marine biology and geography. In this research, we propose an algorithm to restore the true color (albedo) in underwater imagery by jointly learning the effects of the medium and neural scene representations. Our approach models water effects as a combination of light attenuation with distance and backscattered light. The proposed neural scene representation is based on a neural reflectance field model, which learns albedos, normals, and volume densities of the underwater environment. We introduce a logistic regression model to separate water from the scene and apply distinct light physics during training. Our method avoids the need to estimate complex backscatter effects in water by employing several approximations, enhancing sampling efficiency and numerical stability during training. The proposed technique integrates underwater light effects into a volume rendering framework with end-to-end differentiability. Experimental results on both synthetic and real-world data demonstrate that our method effectively restores true color from underwater imagery, outperforming existing approaches in terms of color consistency.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 29 likes.

Upgrade to Pro to view all of the tweets about this paper: