Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Synthetic Hard Negative Samples for Contrastive Learning (2304.02971v2)

Published 6 Apr 2023 in cs.CV and cs.LG

Abstract: Contrastive learning has emerged as an essential approach for self-supervised learning in visual representation learning. The central objective of contrastive learning is to maximize the similarities between two augmented versions of an image (positive pairs), while minimizing the similarities between different images (negative pairs). Recent studies have demonstrated that harder negative samples, i.e., those that are more difficult to differentiate from the anchor sample, perform a more crucial function in contrastive learning. This paper proposes a novel feature-level method, namely sampling synthetic hard negative samples for contrastive learning (SSCL), to exploit harder negative samples more effectively. Specifically, 1) we generate more and harder negative samples by mixing negative samples, and then sample them by controlling the contrast of anchor sample with the other negative samples; 2) considering the possibility of false negative samples, we further debias the negative samples. Our proposed method improves the classification performance on different image datasets and can be readily integrated into existing methods.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.