Papers
Topics
Authors
Recent
2000 character limit reached

Object-centric Inference for Language Conditioned Placement: A Foundation Model based Approach (2304.02893v1)

Published 6 Apr 2023 in cs.RO, cs.AI, and cs.LG

Abstract: We focus on the task of language-conditioned object placement, in which a robot should generate placements that satisfy all the spatial relational constraints in language instructions. Previous works based on rule-based language parsing or scene-centric visual representation have restrictions on the form of instructions and reference objects or require large amounts of training data. We propose an object-centric framework that leverages foundation models to ground the reference objects and spatial relations for placement, which is more sample efficient and generalizable. Experiments indicate that our model can achieve a 97.75% success rate of placement with only ~0.26M trainable parameters. Besides, our method generalizes better to both unseen objects and instructions. Moreover, with only 25% training data, we still outperform the top competing approach.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.