Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

What Affects Learned Equivariance in Deep Image Recognition Models? (2304.02628v2)

Published 5 Apr 2023 in cs.CV and cs.AI

Abstract: Equivariance w.r.t. geometric transformations in neural networks improves data efficiency, parameter efficiency and robustness to out-of-domain perspective shifts. When equivariance is not designed into a neural network, the network can still learn equivariant functions from the data. We quantify this learned equivariance, by proposing an improved measure for equivariance. We find evidence for a correlation between learned translation equivariance and validation accuracy on ImageNet. We therefore investigate what can increase the learned equivariance in neural networks, and find that data augmentation, reduced model capacity and inductive bias in the form of convolutions induce higher learned equivariance in neural networks.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.