Papers
Topics
Authors
Recent
2000 character limit reached

Supporting Energy-Based Learning With An Ising Machine Substrate: A Case Study on RBM (2304.02525v3)

Published 5 Apr 2023 in cs.ET

Abstract: Nature apparently does a lot of computation constantly. If we can harness some of that computation at an appropriate level, we can potentially perform certain type of computation (much) faster and more efficiently than we can do with a von Neumann computer. Indeed, many powerful algorithms are inspired by nature and are thus prime candidates for nature-based computation. One particular branch of this effort that has seen some recent rapid advances is Ising machines. Some Ising machines are already showing better performance and energy efficiency for optimization problems. Through design iterations and co-evolution between hardware and algorithm, we expect more benefits from nature-based computing systems. In this paper, we make a case for an augmented Ising machine suitable for both training and inference using an energy-based machine learning algorithm. We show that with a small change, the Ising substrate accelerate key parts of the algorithm and achieve non-trivial speedup and efficiency gain. With a more substantial change, we can turn the machine into a self-sufficient gradient follower to virtually complete training entirely in hardware. This can bring about 29x speedup and about 1000x reduction in energy compared to a Tensor Processing Unit (TPU) host.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: