Papers
Topics
Authors
Recent
2000 character limit reached

Correcting Flaws in Common Disentanglement Metrics (2304.02335v1)

Published 5 Apr 2023 in cs.LG

Abstract: Recent years have seen growing interest in learning disentangled representations, in which distinct features, such as size or shape, are represented by distinct neurons. Quantifying the extent to which a given representation is disentangled is not straightforward; multiple metrics have been proposed. In this paper, we identify two failings of existing metrics, which mean they can assign a high score to a model which is still entangled, and we propose two new metrics, which redress these problems. We then consider the task of compositional generalization. Unlike prior works, we treat this as a classification problem, which allows us to use it to measure the disentanglement ability of the encoder, without depending on the decoder. We show that performance on this task is (a) generally quite poor, (b) correlated with most disentanglement metrics, and (c) most strongly correlated with our newly proposed metrics.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.