Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Zero-shot domain adaptation of anomalous samples for semi-supervised anomaly detection (2304.02221v1)

Published 5 Apr 2023 in cs.LG and eess.AS

Abstract: Semi-supervised anomaly detection~(SSAD) is a task where normal data and a limited number of anomalous data are available for training. In practical situations, SSAD methods suffer adapting to domain shifts, since anomalous data are unlikely to be available for the target domain in the training phase. To solve this problem, we propose a domain adaptation method for SSAD where no anomalous data are available for the target domain. First, we introduce a domain-adversarial network to a variational auto-encoder-based SSAD model to obtain domain-invariant latent variables. Since the decoder cannot reconstruct the original data solely from domain-invariant latent variables, we conditioned the decoder on the domain label. To compensate for the missing anomalous data of the target domain, we introduce an importance sampling-based weighted loss function that approximates the ideal loss function. Experimental results indicate that the proposed method helps adapt SSAD models to the target domain when no anomalous data are available for the target domain.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube