Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Minimum algorithm sizes for self-stabilizing gathering and related problems of autonomous mobile robots (2304.02212v4)

Published 5 Apr 2023 in cs.DC

Abstract: This paper investigates a swarm of autonomous mobile robots in the Euclidean plane, under the semi-synchronous ($\cal SSYNC$) scheduler. Each robot has a target function to determine a destination point from the robots' positions. All robots in the swarm take the same target function conventionally. We allow the robots to take different target functions, and investigate the effects of the number of distinct target functions on the problem-solving ability, regarding target function as a resource to solve a problem like time. Specifically, we are interested in how many distinct target functions are necessary and sufficient to solve a problem $\Pi$. The number of distinct target functions necessary and sufficient to solve $\Pi$ is called the minimum algorithm size (MAS) for $\Pi$. The MAS is defined to be $\infty$, if $\Pi$ is unsolvable even for the robots with unique target functions. We show that the problems form an infinite hierarchy with respect to their MASs; for each integer $c > 0$ and $\infty$, the set of problems whose MAS is $c$ is not empty, which implies that target function is a resource irreplaceable, e.g., with time. We propose MAS as a natural measure to measure the complexity of a problem. We establish the MASs for solving the gathering and related problems from any initial configuration, i.e., in a self-stabilizing manner. For example, the MAS for the gathering problem is 2. It is 3, for the problem of gathering {\bf all non-faulty} robots at a single point, regardless of the number $(< n)$ of crash failures. It is however $\infty$, for the problem of gathering all robots at a single point, in the presence of at most one crash failure.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.