Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 133 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 61 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Data Aware Neural Architecture Search (2304.01821v1)

Published 4 Apr 2023 in cs.NE

Abstract: Neural Architecture Search (NAS) is a popular tool for automatically generating Neural Network (NN) architectures. In early NAS works, these tools typically optimized NN architectures for a single metric, such as accuracy. However, in the case of resource constrained Machine Learning, one single metric is not enough to evaluate a NN architecture. For example, a NN model achieving a high accuracy is not useful if it does not fit inside the flash memory of a given system. Therefore, recent works on NAS for resource constrained systems have investigated various approaches to optimize for multiple metrics. In this paper, we propose that, on top of these approaches, it could be beneficial for NAS optimization of resource constrained systems to also consider input data granularity. We name such a system "Data Aware NAS", and we provide experimental evidence of its benefits by comparing it to traditional NAS.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.