Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Model Predictive Control for Multi-Agent Systems under Limited Communication and Time-Varying Network Topology (2304.01649v1)

Published 4 Apr 2023 in eess.SY and cs.SY

Abstract: In control system networks, reconfiguration of the controller when agents are leaving or joining the network is still an open challenge, in particular when operation constraints that depend on each agent's behavior must be met. Drawing our motivation from mobile robot swarms, in this paper, we address this problem by optimizing individual agent performance while guaranteeing persistent constraint satisfaction in presence of bounded communication range and time-varying network topology. The approach we propose is a model predictive control (MPC) formulation, building on multi-trajectory MPC (mt-MPC) concepts. To enable plug and play operations when the system is in closed-loop without the need of a request, the proposed MPC scheme predicts two different state trajectories in the same finite horizon optimal control problem. One trajectory drives the system to the desired target, assuming that the network topology will not change in the prediction horizon, while the second one ensures constraint satisfaction assuming a worst-case scenario in terms of new agents joining the network in the planning horizon. Recursive feasibility and stability of the closed-loop system during plug and play operations are shown. The approach effectiveness is illustrated with a numerical simulation.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.