Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

DLRover-RM: Resource Optimization for Deep Recommendation Models Training in the Cloud (2304.01468v2)

Published 4 Apr 2023 in cs.DC, cs.AI, and cs.DB

Abstract: Deep learning recommendation models (DLRM) rely on large embedding tables to manage categorical sparse features. Expanding such embedding tables can significantly enhance model performance, but at the cost of increased GPU/CPU/memory usage. Meanwhile, tech companies have built extensive cloud-based services to accelerate training DLRM models at scale. In this paper, we conduct a deep investigation of the DLRM training platforms at AntGroup and reveal two critical challenges: low resource utilization due to suboptimal configurations by users and the tendency to encounter abnormalities due to an unstable cloud environment. To overcome them, we introduce DLRover-RM, an elastic training framework for DLRMs designed to increase resource utilization and handle the instability of a cloud environment. DLRover-RM develops a resource-performance model by considering the unique characteristics of DLRMs and a three-stage heuristic strategy to automatically allocate and dynamically adjust resources for DLRM training jobs for higher resource utilization. Further, DLRover-RM develops multiple mechanisms to ensure efficient and reliable execution of DLRM training jobs. Our extensive evaluation shows that DLRover-RM reduces job completion times by 31%, increases the job completion rate by 6%, enhances CPU usage by 15%, and improves memory utilization by 20%, compared to state-of-the-art resource scheduling frameworks. DLRover-RM has been widely deployed at AntGroup and processes thousands of DLRM training jobs on a daily basis. DLRover-RM is open-sourced and has been adopted by 10+ companies.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.