Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Dichotomies for Maximum Matching Cut: $H$-Freeness, Bounded Diameter, Bounded Radius (2304.01099v6)

Published 3 Apr 2023 in math.CO, cs.CC, cs.DM, and cs.DS

Abstract: The (Perfect) Matching Cut problem is to decide if a graph $G$ has a (perfect) matching cut, i.e., a (perfect) matching that is also an edge cut of $G$. Both Matching Cut and Perfect Matching Cut are known to be NP-complete. A perfect matching cut is also a matching cut with maximum number of edges. To increase our understanding of the relationship between the two problems, we perform a complexity study for the Maximum Matching Cut problem, which is to determine a largest matching cut in a graph. Our results yield full dichotomies of Maximum Matching Cut for graphs of bounded diameter, bounded radius and $H$-free graphs. A disconnected perfect matching of a graph $G$ is a perfect matching that contains a matching cut of $G$. We also show how our new techniques can be used for finding a disconnected perfect matching with a largest matching cut for special graph classes. In this way we can prove that the decision problem Disconnected Perfect Matching is polynomial-time solvable for $(P_6+sP_2)$-free graphs for every $s\geq 0$, extending a known result for $P_5$-free graphs (Bouquet and Picouleau, 2020).

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: